Rheological Optimization of CO2 Foamed Chelating Stimulation Fluids at High-Pressure, High-Temperature, and Salinity

Author:

BinGhanim Ahmed1,Al-Darweesh Jawad2,Aljawad Murtada S.2,Zhou Xianmin1,Kamal Muhammad S.1,AlYousif Zuhair3,Mahmoud Mohamed2

Affiliation:

1. Centre for Integrative Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia

2. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia

3. EXPECR ARC, Saudi Aramco, Dhahran, 31311, Saudi Arabia

Abstract

Abstract Foamed acidic fluids have been utilized in the industry for enhanced oil recovery and fracturing applications due to their various advantages. Flowback enhancement, recovery of treatment fluids, and reduction of overall water consumption per operation are examples of these advantages. This study examines the utilization of a chelating agent, L-glutamic acid-N, N-diacetic acid (GLDA) in N2 and CO2 foamed fluids, which enhances the stability of foamed acidic fluids, lowers corrosion tendency, and is environmentally friendly. A modified high pressure and high temperature (HPHT) foam rheometer, and foam analyzer at ambient conditions, are used to test the acidic foamed fluids prepared in produced water using N2 and CO2. A screened out Alkyl diamine derivative surfactant has been tested at 212-300 °F and 1000 psi with and without GLDA. The effect of corrosion inhibitor addition on viscosity and foam quality is also investigated. Viscosity and foam quality measurements were done at increasing shear rates from 500 1/s up to 2000 1/s. Results showed that GLDA enhances the foamed fluid viscosity and stability. Resulted viscosities were in the range of 5 cP at higher shear rates to 25 cP in the lower shear rates region. Viscosity, in general, is lowered by higher shear rates, but foam quality is not affected. Fluid systems with a corrosion inhibitor also resulted in lower viscosities. The most stable and relatively higher viscosity values resulted from the 1 wt.% surfactant concentration with the addition of 15 wt.% GLDA and no corrosion inhibitor. Ambient conditions foam analyzer results showed higher foam height and half-life values of 182.8 mm and 16.5 minutes respectively when foaimg using N2 compared to 77.4 mm and 2.16 minutes when foamed with CO2. The addition of corrosion inhibitor showed significant negative impact in all cases, but least on the half-life of the CO2 foamed fluid. The rheology study provided did not consider the addition of thickeners which could be further investigated. This study covers the novel utilization of a chelating agent as an additive in CO2 and N2 acidic foamed fluids at harsh conditions. Furthermore, the fluid systems tested can be investigated and utilized as reliable stimulation fluid systems at temperatures up to 300 °F.

Publisher

IPTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3