Global and Local Surrogate-Model-Assisted Differential Evolution for Waterflooding Production Optimization

Author:

Chen Guodong1,Zhang Kai1,Zhang Liming1,Xue Xiaoming1,Ji Dezhuang1,Yao Chuanjin1,Yao Jun1,Yang Yongfei1

Affiliation:

1. China University of Petroleum (East China)

Abstract

Summary Surrogate models, which have become a popular approach to oil-reservoir production-optimization problems, use a computationally inexpensive approximation function to replace the computationally expensive objective function computed by a numerical simulator. In this paper, a new optimization algorithm called global and local surrogate-model-assisted differential evolution (GLSADE) is introduced for waterflooding production-optimization problems. The proposed method consists of two parts: (1) a global surrogate-model-assisted differential-evolution (DE) part, in which DE is used to generate multiple offspring, and (2) a local surrogate-model-assisted DE part, in which DE is used to search for the optimum of the surrogate. The cooperation between global optimization and local search helps the production-optimization process become more efficient and more effective. Compared with the conventional one-shot surrogate-based approach, the developed method iteratively selects data points to enhance the accuracy of the promising area of the surrogate model, which can substantially improve the optimization process. To the best of our knowledge, the proposed method uses a state-of-the-art surrogate framework for production-optimization problems. The approach is tested on two 100-dimensional benchmark functions, a three-channel model, and the egg model. The results show that the proposed method can achieve higher net present value (NPV) and better convergence speed in comparison with the traditional evolutionary algorithm and other surrogate-assisted optimization methods for production-optimization problems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3