Comparative Evaluation of the Application Effectiveness of Intelligent Production Optimization Methods in Offshore Oil Reservoirs

Author:

Liu Chen123,Feng Qihong1,Zhang Kai1ORCID,Wang Jialin1,Lin Jingqi1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, China

2. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China

3. CNOOC Research Institute Ltd., Beijing 100028, China

Abstract

The development of offshore oil fields confronts challenges associated with high water cut and low displacement efficiency. Reservoir injection-production optimization stands out as an effective means to reduce costs and enhance efficiency in offshore oilfield development. The process of optimizing injection and production in offshore oil reservoirs involves designing strategies for a large number of wells and optimization time steps, constituting a large-scale, complex, and costly optimization computation problem. In recent years, with the rapid advancements in big data and artificial intelligence technologies, sophisticated evolutionary computation methods have found widespread application in reservoir injection-production optimization problems. However, the abundance of intelligent optimization algorithms raises the question of how to choose a method suitable for the complex optimization background of offshore oilfield injection-production optimization. This paper provides a detailed overview of the application of an existing differential evolution algorithm (DE), conventional surrogate-assisted evolutionary algorithm (CSAEA), and global–local surrogate-assisted differential evolution (GLSADE) in the context of practical offshore oilfield injection-production optimization problems. A comprehensive comparison of their performance differences is presented. The study concludes that the global–local surrogate-assisted evolutionary algorithm is the most suitable method for addressing the current challenges in offshore oilfield injection-production optimization.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Major Scientific and Technological Projects of CNOOC

111 Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3