Evaluation of Surfactants for Oil Recovery Potential in Shale Reservoirs

Author:

Nguyen Duy1,Wang Dongmei2,Oladapo Aderaje1,Zhang Jin2,Sickorez Jeffrey1,Butler Ray2,Mueller Brian1

Affiliation:

1. Nalco Champion

2. University of North Dakota

Abstract

Abstract Most shale reservoirs (e.g., Bakken Shale and Eagle Ford) have a low permeability, low porosity, and oil-wet character with natural fractures. As a result, the oil recovery factors are very low, only a few percent of original oil in place. Injection of water into oil-wet reservoirs (i.e., water flooding) is not effective due to small or negative capillary pressure. In this study, various surfactants (non-ionic, cationic, anionic, and amphoteric) were studied for spontaneous imbibition into oil-wet shale cores. Surfactant imbibition into Eagle Ford shale outcrop cores and Bakken reservoir cores increased oil recovery compared to brine only. Oil recovery can be seen for surfactants that alter the reservoir from oil-wet to water-wet. For example, the incremental oil recovery was about 24% % for 0.1% cationic surfactant and 57% for 0.1% nonionic surfactant. The goal of this work is to investigate the effect of salinity, surfactant concentration, electrolyte concentration, and temperature on the wettability alteration and provide mechanisms. Contact angles and interfacial tensions (IFT) were measured and correlated with spontaneous imbibition. Wettability alteration from oil-wet to water-wet (i.e., low contact angle) appeared to be more important than a low interfacial tension in increasing the oil recovery rate from fractured oil-wet reservoirs, especially for nonionic surfactants and amphoteric surfactants. Wettability alteration is maximum and IFT is minimum for anionic and cationic surfactants at an optimal salinity. However, as the reservoir salinity increases, the maximum wettability alteration decreases and IFT increases.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3