Experimental and Numerical Assessment of Chemical Enhanced Oil Recovery in Oil-Wet Naturally Fractured Reservoirs

Author:

Bourbiaux Bernard1,Fourno André1,Nguyen Quang-Long1,Norrant Françoise1,Robin Michel1,Rosenberg Elisabeth1,Argillier Jean-François1

Affiliation:

1. IFP Energies Nouvelles

Abstract

Summary Among various ways to extend the lifetime of mature fields, chemical enhanced-oil-recovery (EOR) processes have been subject of renewed interest in the recent years. Oil-wet fractured reservoirs represent a real challenge for chemical EOR because the matrix medium does not spontaneously imbibe the aqueous solvent of chemical additives. The present paper deals with chemical EOR by use of wettability modifiers (WMs). The kinetics of spontaneous imbibition of chemical solutions in oil-wet limestone plugs and mini-plugs was quantified thanks to X-ray computed-tomography (CT) scanning and nuclear-magnetic-resonance (NMR) measurements. Despite the small size of samples and the slowness of experiments, accurate recovery curves were inferred from in-situ fluid-saturation measurements. Scale effects were found quite consistent between mini-plugs and plugs. During a second experimental step, viscous drive conditions were imposed between the end faces of a plug, to account for the possibly significant contribution of fracture viscous drive to matrix oil recovery. The recovery kinetics and behavior, especially the occurrence of countercurrent and cocurrent flow, are interpreted through the analysis of modified forces in the presence of a diffusing or convected WM that alters rock wettability and reduces water/oil interfacial tension (IFT) to a lesser extent. This work calls for an extensive modeling study to specify the conditions on chemical additives and recovery-process implementation that optimize the recovery kinetics.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3