Stabilized Water-Cut in Carbonate Naturally Fractured Reservoirs With Bottom Water With an Implication in Well Spacing Design for Recovery Optimization

Author:

Prasun Samir1,Wojtanowicz Andrew K.2

Affiliation:

1. Department of Petroleum Engineering, Louisiana State University, Apt. 1252, 275 West Roosevelt Street, Baton Rouge, LA 70802

2. Department of Petroleum Engineering, Louisiana State University, 3212A, PFT Hall, Baton Rouge, LA 70803

Abstract

Abstract Maximum stabilized water-cut (WC), also known as ultimate water-cut in a reservoir with bottom-water coning, provides important information to decide if reservoir development is economical. To date, theory and determination of stabilized water-cut consider only single-permeability systems so there is a need to extend this concept to naturally fractured reservoirs (NFRs) in carbonate rocks—known for severe bottom-water invasion. This work provides insight of the water coning mechanism in NFR and proposes an analytical method for computing stabilized water-cut and relating to well-spacing design. Simulated experiments on a variety of bottom-water hydrophobic NFRs have been designed, conducted, and analyzed using the dual-porosity/dual-permeability (DPDP) commercial software. They show a pattern of water-cut development in NFR comprising the early water breakthrough and very rapid increase followed by water-cut stabilization stage, and the final stage with progressive water-cut. The initial steply increase of water-cut corresponds to water invading the fractures. The stabilized WC production stage occurs when oil is displaced at a constant rate from matrix to the water-producing fractures. During this stage, water invades matrix at small values of capillary forces so they do not oppose water invasion. In contrast, during the final stage (with progressing water cut), the capillary forces grow significantly so they effectively oppose water invasion resulting in progressive water cut. A simple analytical model explains the constant rate of oil displacement by considering the driving effect of gravity and viscous forces at a very small value of capillary pressure. The constant oil displacement effect is confirmed with a designed series of simulation experiments for a variety of bottom-water NFRs. Statistical analysis of the results correlates the duration of the stabilized WC stage with production rate and well-spacing and provides the basis for optimizing the recovery. Results show that stabilized water-cut stage does not significantly contribute to recovery, so the stage needs to be avoided. Proposed is a new method for finding the optimum well spacing that eliminates the stabilized WC stage while maximizing recovery. The method is demonstrated for the base-case NFR.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference63 articles.

1. The Characteristics of Relative Permeability Curves in Naturally Fractured Carbonate Reservoirs;Lian;J. Can. Pet. Technol.,2012

2. Investigation of Water-Coning Phenomenon in Iranian Carbonate Fractured Reservoirs;Namani,2007

3. Coning Phenomena in Naturally Fractured Reservoirs;Al-Afaleg,1993

4. Investigation of Water/Gas Coning in Naturally Fractured Hydrocarbon Reservoirs;Shadizadeh,2001

5. Fundamental Equations of Filtrations of Homogeneous Liquids in Fissured Rocks;Barenblast;Soviet Physics Doklady,1960

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3