Multiscale Carbonate Rock Reconstruction Using a Hybrid WGAN-GP and Super-Resolution

Author:

Zhang Zhen1,Li Yiteng1,AlSinan Marwah2,He Xupeng1,Kwak Hyung2,Hoteit Hussein1

Affiliation:

1. King Abdullah University of Science and Technology

2. Saudi Aramco

Abstract

Abstract The X-ray micro-Computed Tomography (μ-CT) is the primary tool for digital rock imaging, which provides the foundation for numerically studying petrophysical properties of reservoir rocks at the pore scale. However, the finite resolution of μ-CT imaging cannot capture the micro-porosity at the sub-micrometer scale in carbonate rocks. The tradeoff between the resolution and field of view (FOV) is a persisting challenge in the industry. The machine-learning-based single-image super-resolution techniques has rapidly developed in the past few years. It is becoming a promising approach to "super-resolve" low-resolution carbonate rock images. In this study, we present a fast super-resolution generative adversarial network to enhance the image resolution of carbonate rocks. A pre-trained VGG network is implemented to extract important high-level features, from which the perceptual similarity is evaluated between the generated and ground-truth images. The novelty of this study is two-fold. First, the generator is significantly simplified with a fast super-resolution convolutional neural network. On the other hand, the spatial and channel squeeze-and excitation block is applied to recalibrate nonlinear feature mapping so that the quality of super-resolved images is promising even with much fewer residual blocks. To quantify the quality of the super-resolution images, we compare difference maps between the generated and ground-truth images. Numerical results indicate that the proposed network shows excellent potential in enhancing the resolution of heterogeneous carbonate rocks. In particular, the pixel errors are minor, and the super-resolution images exhibit clear and sharp edges and dissolved mineral texture. This study provides a novel machine-learning-based method using a simple generative adversarial network with squeeze and excitation blocks to super-resolve μ-CT images of carbonate rocks.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3