Efficient Displacement of Heavy Oil by Use of Three Hydrocarbon Phases

Author:

Okuno R..1,Xu Z..1

Affiliation:

1. University of Alberta

Abstract

Summary Mixtures of oil with solvent gas can exhibit three-hydrocarbon-phase behavior at reservoir conditions, where the solvent-rich liquid (L2) phase coexists with the gaseous (V) and oleic (L1) phases. Three-hydrocarbon-phase behavior has been studied in the literature for carbon dioxide (CO2) floods and enriched-gas floods at relatively low temperatures. Prior research on heavy-oil displacement with enriched gas presented that displacement efficiency at a given throughput can be nonmonotonic with respect to gas enrichment. Slimtube experiments for such displacements showed that oil recovery increased first, then decreased, and increased again with increasing gas enrichment. An optimum displacement with a high efficiency of more than 90% was observed when three-hydrocarbon-phase flow was present. However, detailed mechanisms for such an optimum displacement with three phases have not been explained in the literature. In this research, we investigate mass transfer on multiphase transitions between two and three phases for three-hydrocarbon-phase displacements. Simple conditions are derived for the multiphase transitions that yield high local displacement efficiency by three hydrocarbon phases. The derivation is based on the generalized mass conservation for a multiphase transition in 1D gas injection. The conditions derived are applied to explain nonmonotonic oil recovery in quaternary displacements and the West Sak oil displacements. Oil recovery at a given throughput can be nonmonotonic with respect to pressure or gas enrichment. Such a nonmonotonic trend can occur when local oil displacement by three hydrocarbon phases becomes more efficient, but slower, with decreasing pressure or decreasing gas enrichment. An optimum pressure or enrichment can occur as a consequence of the balance between the local displacement efficiency and the propagation rate of three hydrocarbon phases. The West Sak oil displacement with enriched gas studied in this research yields a high displacement efficiency of more than 90% at 1.5 hydrocarbon pore volumes (PV) injected at 53% methane (C1) dilution.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3