Impact of Reservoir Mixing on Recovery in Enriched-Gas Drives Above the Minimum Miscibility Enrichment

Author:

Solano R.1,Johns R. T.1,Lake L. W.1

Affiliation:

1. U. of Texas at Austin

Abstract

Summary Gas enrichment is an important variable used to optimize oil recovery in enriched-gas drives. For slimtube experiments, oil recoveries do not increase significantly with enrichments greater than the minimum miscibility enrichment (MME). For field projects, however, the optimum enrichment required to maximize recovery on a pattern scale may be different from the MME. The optimum enrichment is likely the result of greater mixing in reservoirs than in slimtubes. In addition, 2D effects, such as channeling, gravity tonguing, and crossflow, can impact the enrichment selected. Numerical simulation is often used to model the effect of physical mixing on oil recovery in miscible gasfloods. Unfortunately, numerical dispersion can cloud the interpretation of the results by artificially increasing the level of mixing in the reservoir. This paper investigates the interplay among various mixing mechanisms, enrichment levels, and numerical dispersion. The mixing mechanisms examined are mechanical dispersion, gravity crossflow, and viscous crossflow. The U. of Texas Compositional Simulator (UTCOMP) is used to evaluate the effect of these mechanisms on recovery for different grid refinements, reservoir heterogeneities, injection boundary conditions, relative permeabilities, and numerical weighting methods, including higher-order methods. The reservoir fluid used for all simulations is a 12-component oil displaced by gases enriched above the MME. The results show that for 1D enriched gasfloods, the recovery difference between displacements above the MME and those at or near the MME increases significantly with dispersion. The trend, however, is not monotonic and shows a maximum at a dispersivity of approximately 4 ft. The trend is independent of relative permeabilities and gas trapping for dispersivities of less than approximately 4 ft. For 2D enriched gasfloods with slug injection, the difference in recovery generally increases as dispersion and crossflow increase. The magnitude of the recovery differences is less than that observed for the 1D displacements. Recovery differences for 2D models are highly dependent on relative permeabilities and gas trapping. For water alternating gas (WAG) injection, the differences in recovery increase slightly as dispersion decreases. That is, the recovery difference is significantly greater with WAG at low levels of dispersion than with slug injection. For the cases examined, the magnitude of recovery difference varies from approximately 1 to 8% of the original oil in place (OOIP).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3