The Use of Modeling to Enhance the Analysis of Formation Pressure Integrity Tests

Author:

Alberty M. W.1,McLean M. R.1

Affiliation:

1. Hess Corporation

Abstract

Abstract Formation pressure integrity tests (FPIT) are used to verify the integrity of cement at a casing shoe, measure the stress state of the exposed formations for well planning and operations, and determine the maximum equivalent circulating density (ECD) to which a shoe can be safely exposed. Critical decisions on operations are made directly from the results and include decisions about the need for remedial cement operations, maximum mud weights that can be used to drill the next well section, minimum mud weights that can be used to prevent hole collapse, calibration factors for predicting fracture gradients, and the potential need for lost circulation mitigation strategies. The interpretation techniques of the result most frequently focus upon the point at which a fracture first initiates, the point where unstable fracture growth begins, or the closure pressure of the fracture when pumping ceases. However, the early pressure build-up behavior is often overlooked and can provide much insight on the integrity of cement, the point of initiation of a fracture, the permeability of the formation being tested, the need for cement remediation, and the potential to increase fracture resistance using wellbore strengthening techniques. This paper presents a model for predicting early pressure build-up behavior, discusses how the model can be used to improve the interpretation of FPIT tests significantly, and provides examples of the application in select wells.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3