Hydraulic Fracture Modeling Workflow and Toolkits for Well Completion Optimization in Unconventionals

Author:

Bai Taixu1,Will Johannes1,Eckardt Stefan1,GmbH Dynardo1,Chang Dahai1,Lake Ed1,Madyarov Andrew1,Xiao Xiaohui2,Fay Mathew3,Meij Robert3,Yuan Roger4,Gao Yi4,Chu Joanne4

Affiliation:

1. Shell Exploration and Production Company

2. Shell International Exploration and Production, Inc.

3. Shell Canada Ltd

4. Shell China Exploration and Production Co. Ltd.

Abstract

Abstract Unconventional reservoirs produce substantial quantities of oil and gas. These reservoirs are usually characterized by ultra-low matrix permeability. Most unconventional reservoirs are hydraulically fractured in order to establish more effective flow from the reservoir and fracture networks to the wellbores. The success of hydraulic fracture stimulation in horizontal wells has the potential to dramatically change the oil and gas production landscape across the globe and the impacts will endure for decades to come. For a given field development project, the economics are highly dependent completion establishing effective and retained contact with the hydrocarbon bearing rocks. Well and completion design parameters that influence the economic success of the field development include well orientation and landing zone, stage spacing and perforation cluster spacing, fluid volume, viscosity and pumping rate, and proppant volume, size and ramping schedule. Optimization of these design parameters to maximize asset economic value is key to the success of every unconventional asset. To achieve an optimal completion design for an asset, the current industry practice is to conduct a large number of field trials that require high capital investment and long cycle-time, and most importantly, significantly erode the project value. The workflow and toolkits shown in this paper offer a much cheaper and faster alternative approach in which to develop an optimal well completion design for EUR and unit development cost (UDC) improvements. It provides an integrated well placement and completion design optimization process that integrates geomechanics descriptions, formation characterizations, flow dynamics, microseismic event catalogues, hydraulic fracturing monitoring data, well completion and operational parameters in a modeling environment with optimization capability. The model is built upon a 3D geological model with multi-disciplinary inputs including formation properties, in-situ stresses, natural fracture descriptions, and well and completion parameters (i.e., well orientation, landing interval, fluid rate and volume, perforation spacing, and stage spacing). Upon calibrating with the hydraulic fracturing diagnosis data, the model provides optimized well completion design, and guidance on data acquisition and diagnostic needs to achieve EUR performance at optimized costs. Field trials based on recommendations from the approach have yielded encouraging production uplift and have led to a significant reduction in the number of trials and cost compared to the commonly used trial-and-error approach. We believe it is technically feasible to derive an optimal completion design using a subsurface based forward modeling approach which will deliver significant value to the industry.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3