Middle East Gas Field Case Study Proves Step Change in BHA Reliability Through New HFTO-Isolation Tool

Author:

Heinisch Dennis1,Kueck Armin1,Herbig Christian1,Zuberi Mamoon1,Peters Volker1,Reckmann Hanno1

Affiliation:

1. Baker Hughes, a GE company

Abstract

Abstract Self-excited torsional vibrations of the bottomhole assembly (BHA) at frequencies above 50 Hz, so-called "high-frequency torsional oscillations" (HFTO), can damage drilling tools and can increase non-productive time (NPT). A recently developed HFTO-isolation tool protects the drilling tools above this tool from these harmful vibrations. More than 200 field runs were investigated to evaluate the changes in reliability and benefits. The concept of the isolation tool works similarly to a two-mass flywheel used in automotive drive trains. The design was simulated, lab-tested and first deployed in a field run in 2018. Since then, the isolation tool was successfully used in various fields and applications in the Middle East. HFTO severity while drilling was measured and recorded below and above the isolation tool to verify functionality and to quantify reduction in torsional loads (torque, tangential acceleration) for the measurement while drilling (MWD), mud pulse telemetry (MPT), and logging while drilling (LWD) tools above the tool. In addition, HFTO-related incidents and other drilling performance indicators with and without the new tool were analyzed. Analysis of the recorded vibration data from several field runs with an additional high-frequency MWD-tool reveals that the isolation principle works consistently. As predicted by simulation, the measured torsional vibration amplitudes above the tool are significantly lower than without using it, demonstrating the effective protection for MWD-, LWD-, and MPT-tools in the BHA. The tool has proven consistent performance in more than 16,000 accumulated circulating hours. Tool failures caused by HFTO were eliminated, compared to 22 percent of all failures without the isolation tool. The results of an analysis of individual MWD- and MPT-tools used in runs with and without the isolation tool show a significant increase in distance drilled per tool deployment and re-run decisions. This directly translates to increased asset utilization, fewer trips for failure, and BHA handling operations that results in less non-productive time (NPT) and enables drilling in extremely challenging environments more efficiently.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3