Laboratory-Based Evaluation of Gas Well Deliverability Loss Caused by Water Blocking

Author:

Kamath Jairam1,Laroche Catherine2

Affiliation:

1. ChevronTexaco E&P Technology Co.

2. Institut Français du Pétrole

Abstract

Summary Water blocking caused by invasion of completion fluids has been suspected to reduce gas well deliverability.1–5 However, this effect has not been quantified. We report results of a laboratory program to measure the water-blocking effect in core samples from a gas field. These data were mapped to a wellbore model to make deliverability predictions. The laboratory data consist of gas flow rate as a function of injected gas pore volume for various liquids (brine, methanol, toluene, isopropyl alcohol, and brine-methanol mixtures) at two saturation states (fully saturated with liquid, and containing liquid and trapped gas). We injected over 10,000 PV of gas in each test to mimic near-wellbore conditions. The data showed that the liquid displacement regime was followed by a mass transfer regime. The wellbore model had a time varying skin to account for the cleanup of the fluid invaded ("water-blocked") region. Cleanup occurs as gas flows past this high liquid-saturated region and removes liquid by displacement and mass transfer. We used the laboratory data to relate the reduced permeability of this region to pore volumes of gas throughput. We find that any loss in gas well deliverability recovers in two phases. The first phase corresponds to fluid displacement ("flowback period") and lasts for a few days at most. The second phase is slower and can last several months. Here, evaporation causes the deliverability to slowly increase. It is in this regime that adding volatile fluids, such as methanol, to the completion brines has advantages.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3