Evaluation of CO2 and Slickwater Fracturing for the Burgos Basin of Mexico

Author:

Silva-Escalante C. F.1,Camacho-Velazquez R. G.1,Gómora-Figueroa A. P.1,Sharma Mukul M.2

Affiliation:

1. National Autonomous University of Mexico, UNAM, Mexico City, Mexico

2. University of Texas at Austin, Austin, Texas, United States of America.

Abstract

Abstract This work aims to evaluate the fracture geometry and production scenarios comparing several fracturing fluids, such as slickwater and carbon-based fracturing fluids (CBFF), including two binary mixtures as approximations to anthropogenic CO2 resulting from carbon capture (oxyfuel, pre-combustion, and post-combustion). Reservoir flow modeling simulations show that CBFF is the best potential waterless fracturing fluid option for fracturing unconventional shale reservoirs in the Burgos Basin. We conducted fracturing simulations to obtain the fracture geometry resulting from pure CO2, gelled CO2, foamed CO2, as well as the binary mixtures CO2 (95% mol)-N2 (5% mol), and CO2 (95% mol)-H2 (5% mol) and compared the results to conventional slickwater fracturing. Data and information for this study come from a gas well in the Burgos Basin in Mexico. A compositional fracturing simulation model is used to obtain the fracture geometry and the conditions under which the CO2 fracturing would be optimal based on a sensitivity analysis of the critical parameters described in this work. We created a reservoir simulation model to generate production scenarios and compare the well performance of wells fractured with pure CO2 and slickwater. The impact of water blockage effects on well productivity is shown to be important. Results show that pure CO2, CO2-N2, and CO2-H2 create fracture geometries that are similar to slickwater fracturing. Pure CO2 provides the highest production due to the absence of water blockage effects. Other carbon-based fracturing fluids also represent an opportunity for implementing CO2 to optimize well performance reducing water blockage and water consumption for sustainably fracturing conventional and unconventional reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3