Formulation of a General Multiphase, Multicomponent Chemical Flood Model

Author:

Fleming Paul D.1,Thomas Charles P.1,Winter William K.1

Affiliation:

1. Phillips Petroleum Co.

Abstract

Abstract A general multiphase, multicomponent chemical flood model has been formulated. The set of mass conservation laws for each component in an isothermal system is closed by assuming local thermodynamic (phase) equilibrium, Darcy's law for multiphase flow through porous media, and Fick's law of diffusion. For the special case of binary, two-phase flow of nonmixing incompressible fluids, the equations reduce to those of Buckley and Leverett. The Buckley-Leverett equations also may be obtained for significant fractions of both components in the phases if the two phases are sufficiently incompressible. To illustrate the usefulness of the approach, a simple chemical flood model for a ternary, two-phase system is obtained which can be applied to surfactant flooding, polymer flooding, caustic flooding, etc. Introduction Field tests of various forms of surfactant flooding currently are under way or planned at a number of locations throughout the country.1 The chemical systems used have become quite complicated, often containing up to six components (water, oil, surfactant, alcohol, salt, and polymer). The interactions of these components with each other and with the reservoir rock and fluids are complex and have been the subject of many laboratory investigations.2–22 To aid in organizing and understanding laboratory work, as well as providing a means of extrapolating laboratory results to field situations, a mathematical description of the process is needed. Although it seems certain that mathematical simulations of such processes are being performed, models aimed specifically at the process have been reported only recently in the literature.23–31 It is likely that many such simulations are being performed on variants of immiscible, miscible, and compositional models that do not account for all the facets of a micellar/polymer process. To help put the many factors of such a process in proper perspective, a generalized model has been formulated incorporating an arbitrary number of components and an arbitrary number of phases. The development assumes isothermal conditions and local phase equilibrium. Darcy's law32,33 is assumed to apply to the flow of separate phases, and Fick's law34 of diffusion is applied to components within a phase. The general development also provides for mass transfer of all components between phases, the adsorption of components by the porous medium, compressibility, gravity segregation effects, and pressure differences between phases. With the proper simplifying assumptions, the general model is shown to degenerate into more familiar special cases. Numerical solutions of special cases of interest are presented elsewhere.35

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3