Numerical Modeling and Validation of a Novel 2D Compositional Flooding Simulator Using a Second-Order TVD Scheme

Author:

Druetta Pablo,Picchioni FrancescoORCID

Abstract

The aim of this paper is to present the latter and develop a numerical simulator aimed at solving a 2D domain porous medium, using the compositional approach to simulate chemical flooding processes. The simulator consists in a two-phase, multicomponent system solved by the IMplicit in Pressure, Explicit in Concentration (IMPEC) approach, which can be operated under an iterative/non-iterative condition on each time-step. The discretization of the differential equations is done using a fully second order of accuracy, along with a Total Variation Diminishing (TVD) scheme with a flux limiter function. This allowed reducing the artificial diffusion and dispersion on the transport equation, improving the chemical species front tracking, decreasing the numerical influence on the recovery results. The new model was validated against both commercial and academic simulators and moreover, the robustness and stability were also tested, showing that the iterative IMPEC is fully stable, behaving as an implicit numerical scheme. The non-iterative IMPEC is conditionally stable, with a critical time-step above which numerical spurious oscillations begin to appear until the system numerically crashes. The results showed a good correspondence in different grid sizes, being largely affected by the time-step, with caused a decrease in the recovery efficiency in the iterative scheme, and the occurrence of numerical oscillations in the non-iterative one. Numerically speaking, the second-order scheme using a flux splitting TVD discretization proved to be a good approach for compositional reservoir simulation, decreasing the influence of numerical truncation errors on the results when compared to traditional, first-order linear schemes. Along with these studies, secondary recoveries in constant and random permeability fields are simulated before employing them in tertiary recovery processes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference53 articles.

1. Resources to Reserves 2013

2. Fundamentals of Reservoir Engineering;Dake,1978

3. Enhanced Oil Recovery;Lake,1989

4. Enhanced Oil Recovery;Green,1989

5. Methods in Oil Recovery Processes and Reservoir Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3