Elastic Full Wavefield Inversion: The Benefits and the Challenges in Clastic and Subsalt Setting

Author:

Baumstein Anatoly1,Routh Partha1,Basler-Reeder Kyle2,Ho Cha Young1,Tang David1,Barr Jay3,Martinez Alex4

Affiliation:

1. ExxonMobil Upstream Research Company

2. ExxonMobil Technology and Engineering Company

3. ExxonMobil Upstream Company

4. ExxonMobil Upstream Integrated Solutions Company

Abstract

Abstract The main focus of our work is application of visco-elastic Full Waveform Inversion (eFWI) to estimation of elastic parameters directly from seismic shot data. In particular, we aim to recover the ratio between pressure wave velocity Vp and shear wave velocity Vs, which can be indicative of the type of fluid present in a potential subsurface reservoir. The workflow we describe does not directly use well ties for wavelet control, as is typical in seismic inversion. We provide intuitive explanations for choices behind the proposed multi-stage hierarchical algorithm, outline its key steps, and present field data examples from a structurally simple clastic setting and a complex sub-salt environment. The latter, in particular, makes differentiating net versus non-net in pre-salt carbonate reservoirs a challenging problem when using narrow azimuth streamer data. The challenges include significant illumination variability caused by complex geometries of the evaporites, complex wave modes and scattering caused by strong property contrasts in the evaporites and carbonates, and layering of anhydrite and other salts within the evaporites causing complex transmission losses. The thick carbonate reservoir units beneath the salt further complicate the estimation process due to lack of low frequency signal recorded in streamer data. Our methodology shows that it is possible to directly invert shot data to obtain geologically meaningful elastic properties that can be useful in exploration and early development phases. However, challenges remain. We demonstrate that inverted acoustic impedance (Ip) from eFWI has higher fidelity and more reliable magnitude compared to the ratio between compressional and shear wave propagation speeds (Vp/Vs). In fact, the former is sufficiently accurate to be reliably used for porosity prediction. In turn, eFWI Vp/Vs inversion results are in qualitative agreement with well information (as a blind test) for the clastic example and able to discriminate the net versus non-net for the pre-salt example without well information. However, the quantitative match may be insufficient to determine the type of fluid via rock property inversion without any well control. Further research is needed to investigate the sensitivity of Vp/Vs and determine if the quality of the data is key a factor, in addition to stabilizing simultaneous extraction of several elastic parameters from seismic data via constrained inversion framework.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Value of elastic full-wavefield inversion in derisking clastic reservoirs in presence of noise;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

2. Insights from Application of Elastic Full Wave-Field Inversion in Clastic and Sub-Salt Settings.;Day 1 Wed, March 01, 2023;2023-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3