Permeability of Organic-Rich Shale

Author:

Wasaki Asana1,Akkutlu I. Yucel1

Affiliation:

1. Texas A&M University

Abstract

Summary Measured permeability of an organic-rich shale sample varies significantly with applied laboratory conditions, such as the confining pressure, temperature, and the measurement fluid type. This indicates that the measured quantity is influenced by several mechanisms that add complexity to the measurement. The complexity is mainly caused by stress dependence of the matrix permeability. Also, it is because organic-rich shale holds significant volumes of fluids in sorbed (adsorbed, dissolved) states; sorption can also influence the permeability through its own storage and transport mechanisms. The stress-dependence and sorption effects on permeability could develop under the reservoir conditions and influence the production, although we currently do not have a predictive permeability model that considers their coexistence. In this work, this is accomplished by considering that the shale matrix consists of multiple continua with organic and inorganic pores. Stress dependency of the permeability comes along with slit-shaped pores, whereas the sorption effects are associated with nanoscale organic capillaries. A simple conceptual flow model with an apparent shale permeability is developed that couples the molecular-transport effects of the sorbed phase with the stress dependence of the slit-shaped pores. The simulation results show the impact of the permeability model on the production. Sensitivity analysis on the new permeability model shows that the stress dependence of the overall transport is significant at high pore pressure, when the effective stress is relatively low. Diffusive molecular transport of the sorbed phase becomes important as the stress gets larger and, hence, the slit-shaped pores close. The constructed apparent-permeability vs. pore-pressure curves show the dominance of the molecular transport as an increase in permeability characterized by appearance of a minimum permeability value at the intermediate values of the pressure. One can use the new permeability model easily in history matching a well performance and optimizing its production.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3