Optimization and Design of Next-Generation Geothermal Systems Created by Multistage Hydraulic Fracturing

Author:

McClure Mark1,Kang Charles1,Fowler Garrett1

Affiliation:

1. ResFrac Corporation

Abstract

AbstractMultistage hydraulic stimulation has the potential to greatly expand the production of geothermal in the United States and worldwide. Zonal isolation and limited-entry completion overcome the problem of flow localization and generate hundreds or thousands of conductive fractures throughout a large volume of rock. In contrast, conventional geothermal stimulation designs are bullheaded as a single stage into a vertical or deviated wellbore, resulting in a small number of dominant flow-pathways. In this study, we perform a modeling study to investigate key physical processes and design considerations for a geothermal system created from multistage hydraulic stimulation. We use a simulator that fully integrates a wellbore simulator, a hydraulic fracturing simulator, and a thermal/compositional reservoir simulator. Thermoelastic and poroelastic stress changes are included, which enables the model the simulate mechanical opening (separation of fracture walls) due to cooling during long-term fluid circulation between wells. The simulator can handle the full life-cycle in a single continuous simulation – multistage fracturing (including crack propagation, proppant, limited-entry, etc.) and long-term circulation. We start by reviewing historic background on the application of hydraulic stimulation to improve geothermal energy production. Next, we discuss key uncertainties regarding stimulation mechanism and fracture geometry. Drawing on this background information, we set up simulations of multistage hydraulic fracturing and long-term fluid circulation through an injector/producer pair. The simulations demonstrate how multistage fracturing enables large flow rates and relatively efficient sweep of heat through large volumes of rock. However, the simulations demonstrate how mechanical opening of fractures due to thermal contraction exacerbates thermal short-circuiting. Produced temperature drops rapidly once mechanical opening reaches the production well. Parameters such as well spacing, fracture spacing, and flow rate can be designed to mitigate thermal breakthrough and maximize discounted return on investment. We integrate the simulator with an optimization algorithm to solve a hypothetical engineering design problem to maximize net present value by optimizing well spacing, fracture spacing, and flow rate. The optimization shows how a balance can be struck between rate acceleration and mitigation of thermal breakthrough.

Publisher

SPE

Reference61 articles.

1. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia;Baisch;Bulletin of the Seismological Society of America,2006

2. Baria R. , Michelet, S., Baumgärtner, J., Dyer, B., Gerard, A., Nicholls, J., Hettkamp, T., Teza, D., Soma, N., Asanuma, H., Garnish, J., and Megel, T. 2004. Microseismic monitoring of the world's largest potential HDR reservoir. Proceedings of the Twenty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford University.

3. Temperature-at-depth maps for the conterminous US and geothermal resource estimates;Blackwell;GRC Transactions,2011

4. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy

5. Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: application to the Rosemanowes Hot Dry Rock reservoir;Bruel;Geothermics,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3