Reservoir and Fracture Characterization for Enhanced Geothermal Systems: A Case Study Using Multifractured Wells at the Utah Frontier Observatory for Research in Geothermal Energy Site

Author:

Zeinabady D.1ORCID,Clarkson C. R.2ORCID

Affiliation:

1. University of Calgary (Corresponding author)

2. University of Calgary

Abstract

Summary For enhanced geothermal systems (EGS), multistage hydraulic fracturing along a deviated or horizontal well is a key technology used to create a high-conductivity fracture network between injection and production wells in deep, low-permeability geothermal reservoirs. The purpose of the created fracture network is to allow for the efficient transfer of fluid, heated by the geothermal reservoir, from the injection to the production well; therefore, well spacing (between injection and production wells) and hydraulic fracturing must be designed not only to promote connectivity between well pairs but also to mitigate thermal short-circuiting and thermal breakthrough. Analysis of post-fracture pressure decay (PFPD) data measured after each stage of a hydraulic fracturing treatment can be used to provide critical reservoir and fracture parameters required for well and hydraulic fracturing design optimization; this method provides a low-cost alternative and complementary approach to in-situ observation techniques, such as core-through experiments, fiber optics, or image logs in offset wells. Until now, PFPD has primarily been applied to multifractured horizontal wells (MFHWs) completed in low-permeability hydrocarbon reservoirs. The goal of this study is therefore to develop a methodology to estimate fracture and reservoir parameters using stage-by-stage PFPD data associated with EGS projects. An analytical model is proposed herein to estimate fracturing fluid efficiency, fracture length, average fracture aperture, average fracture conductivity, and reservoir permeability for different possible fracture geometries in EGS reservoirs. PFPD data collected for three hydraulic fracture stages in the injection well at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) site were analyzed to demonstrate the practical application of the proposed method. The results of this study indicate that, due to the presence of natural fractures in the target (granitic) reservoir, the hydraulic fracturing treatment (using slickwater) in the openhole section resulted in low fracturing fluid efficiency and small hydraulic fractures. In contrast, hydraulic fracturing treatments conducted in the perforated casedhole wellbore resulted in higher fracturing fluid efficiency and created larger hydraulic fractures even with smaller injected volumes. The results of the PFPD analysis were confirmed using a Formation MicroScanner image log and microseismic data collected during each stage of hydraulic fracturing.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3