Application of a Forced Vibration Modeling Approach to Better Quantify the Role of Downhole Vibrations and Excitation Tools

Author:

Nguyen Khac-Long1,Mahjoub Mohamed1,Dao Ngoc-Ha1,Menand Stéphane1

Affiliation:

1. Helmerich & Payne

Abstract

Abstract Drilling operations can induce several external excitations to the drillstring and bottom-hole assembly (BHA) due, namely, to the drillstring-wellbore contacts, bit-rock interactions, fluid flow, and mass imbalances. On the one hand, such undesirable excitations may lead to excessive vibrations and damage to the drill bit, BHA, or drill-pipes. On the other hand, some vibration tools are used to intentionally introduce a source of lateral vibrations in the drillstring to reduce the friction effects and enhance the rate of penetration. Whether these vibrations are undesirable or intentional, efficient models are necessary to predict them accurately to help optimize the drilling parameters and vibration tools placement in the drillstring. The time-domain analysis can give a detailed portrayal of drillstring vibrations, but usually requires a lengthy computational time, especially for the simulation of long structures. This paper focuses on an alternative analysis using a forced vibration model based on a linearized frequency analysis. It consists of studying the magnitude of the displacement, velocity, acceleration, and internal efforts, when the drillstring is subject to an external harmonic excitation at a given frequency. This numerical model is based on the beam finite element method, where the wellbore-drillstring contact effects are considered using a Jacobian matrix approach. The forced vibration model is applied to study the lateral vibrations produced either by mud motors or lateral vibration tools. The comparison between the results of frequency and time-domain analyses shows that the forced vibration model can describe the global behavior of drillstring vibrations with a fast computation. When varying the excitation frequency, critical values giving large vibrations could be identified and avoided by the driller thanks to a heat map representation of the vibration magnitude as a function of the position and excitation frequency. The novelty of this work is in showing the capacities and limitations of the forced vibration analysis compared to time-domain analysis. The fast computation of the frequency analysis can provide efficient and accurate predictions and, therefore, could be employed to optimize the BHA design and drilling parameters, and therefore reduce the harmful vibrations and improve the performance of any drilling systems equipped with downhole excitation tools.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3