A Combined Bottom-hole Pressure Calculation Procedure Using Multiphase Correlations and Artificial Neural Network Models

Author:

Li X..1,Miskimins J. L.1,Hoffman B. T.1

Affiliation:

1. Colorado School of Mines

Abstract

Abstract The desire to have accurate bottom-hole pressure (BHP) data can come during different phases of a well's life, including well design, mini-frac test, well testing, and production analysis. But frequently, it is not practical, feasible, or economic to deploy a pressure gauge to measure the BHP directly. In most cases, however, the unknown flowing BHP is calculated from the known parameters and surface measurements using multiphase correlations or mechanistic modeling. Recently, artificial neural network (ANN) techniques have been adopted to predict BHP and proved to have better prediction performance than other conventional prediction methods. With the design applied in this study, the use of ANN techniques can be more fully utilized to solve complex multiphase flow problems, such as pressure gradient prediction and complex well trajectories. Back-propagation (BP) neural network models have been modified to fit into the piece-wise calculation procedures of multiphase correlations to achieve higher prediction accuracy and broaden the prediction range. The model training requires well-segment-scale data sets, which contain pressure gradients as the model output and the model inputs, including inclination angle, liquid and gas superficial velocities, gas-liquid surface tension, liquid density, specific gravity of free gas, liquid and gas viscosities, average pressure and temperature. Different BP neural network model structures have been tested to find a suitable neuron number in the hidden-layer of the model. Two pressure gradient prediction models were trained for slug flow and annular mist flow. Ultimately, a combined BHP calculation procedure was designed combining the multiphase correlations and trained ANN models. The statistical tests using the collected data showed that the combined procedure gave the best prediction performance against the eleven multiphase correlations studied in this work and had the lowest average absolute percent error of 3.1% and standard deviation of 0.034. Independent field data was used to test the extendibility of the combined procedure prediction range. Comparing to the multiphase correlations, the combined procedure gave fairly accurate predictions with an average absolute percent error of 23.0% and a standard deviation of 0.176. To facilitate field application, a multiphase flow BHP calculator with a user interface was developed.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3