A Model To Simulate Matrix-Acid Stimulation for Wells in Dolomite Reservoirs with Vugs and Natural Fractures

Author:

Ali Mahmoud T.1,Ezzat Ahmed A.1,Nasr-El-Din Hisham A.1

Affiliation:

1. Texas A&M University

Abstract

SummaryDesigning matrix-acid stimulation treatments in vuggy and naturally fractured carbonate reservoirs is a challenging problem in the petroleum industry. It is often difficult to physically model this process, and current mathematical models do not consider vugs or fractures. There is a significant gap in the literature for models that design and evaluate matrix-acid stimulation in vuggy and naturally fractured carbonate reservoirs. The objective of this work is to develop a new model to simulate matrix acidizing under field conditions in vuggy and naturally fractured carbonates.To obtain accurate and reliable simulation parameters, acidizing coreflood experiments were modeled using a reactive-flow simulator. A 3D radial field-scale model was used to study the flow of acid in the presence of vugs (pore spaces that are significantly larger than grains) and natural fractures (breaks in the reservoir that were formed naturally by tectonic events). The vugs’ size and distribution effects on acid propagation were studied under field conditions. The fracture length, conductivity, and orientation, and the number of fractures in the formation, were studied by the radial model. The results of the numerical simulation were used to construct Gaussian-process (GP)-based surrogate models for predicting acid propagation in vuggy and naturally fractured carbonates.Finally, the acid propagation in vuggy/naturally fractured carbonates was evaluated, as well.The simulation results of vuggy carbonates show that the presence of vugs in carbonates results in faster and deeper acid propagation in the formation when compared with homogeneous reservoirs at injection velocities lower than 8×10–4 m/s. Results also revealed that the size and density of the vugs have a significant impact on acid consumption and the overall performance of the acid treatment. The output of the fracture model illustrates that under field conditions, fracture orientations do not affect the acid-propagation velocity. The acid does not touch all of the fractures around the well. The GP model predictions have an accuracy of approximately 90% for both vuggy and naturally fractured cases. The vuggy/naturally fractured model simulations reveal that fractures are the main reason behind the fast acid propagation in these highly heterogeneous reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3