Three‐dimensional simulation of the acidizing process under different influencing factors in fractured carbonate reservoirs

Author:

Guo Anbang1,Tang Xuhai12ORCID,Qiao Jiangmei1,Zhou Linbo3,Luo Pandeng4

Affiliation:

1. The Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province, School of Civil Engineering Wuhan University Wuhan China

2. Wuhan University Shenzhen Research Institute Shenzhen China

3. Sinopec Research Institute of Petroleum Engineering Beijing China

4. Sinopec Northwest Oil Field Company Urumqi China

Abstract

AbstractMatrix acidizing is widely used to enhance oil/gas production in the exploitation of carbonate reservoirs. In this work, a three‐dimensional (3D) hydro‐chemical‐thermal (H‐C‐T)‐coupled model was presented to improve the understanding of the acidizing process. The influence of different influencing factors was analyzed, especially the coupling effect of natural fractures and in situ stress. With the increase in acid injection concentration, the minimum pore volume of acid required for breakthrough (PVBT) decreases. The optimal injection rate and the minimum PVBT increase with increasing initial reservoir temperature. With the increasing initial reservoir permeability, the minimum PVBT increases. With the increasing initial reservoir pore diameter and specific surface area, the minimum PVBT and the optimal acid injection rate increase. When the fracture direction is perpendicular to the direction of the maximum principal stress, the fracture apertures decrease with the increase of the maximum principal stress, which leads to an increase in PVBT and wider paths of wormholes. Lastly, the present H‐C‐T‐coupled model was applied in the context of Tahe reservoir exploitation, which shows that optimizing the acid injection rate is able to enhance the connection between wellbores and natural caves.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3