Hybrid Physics-Based and Data-Driven Modeling for Improved Standpipe Pressure Prediction

Author:

Erge Oney1,van Oort Eric1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract During drilling operations, it is common to see pump pressure spikes when flow is initiated, including after a connection or after a prolonged break in drilling operations. It is important to be able to predict the magnitude of such pressure spikes to avoid compromising wellbore integrity. This study shows how a hybrid approach using data-driven machine learning coupled with physics-based modeling can be used to accurately predict the magnitude of pressure spikes. To model standpipe pressure behavior, machine learning techniques were combined with physics-based models via a rule-based, stochastic decision-making algorithm. To start, neural networks and deep learning models were trained using time-series drilling data. From there, physics-based equations that model the pressure required to break the mud's gel strength as well as the flow of non-Newtonian fluids through the entire circulation system were used to simulate standpipe pressure. Then, these two highly different methods for predicting/modeling standpipe pressure were combined by a hidden Markov model using a set of rules and transition probabilities. By combining machine learning and physics-based approaches, the best features of each model are leveraged by the hidden Markov model, yielding a more accurate and robust prediction of pressure. A similar result is not achievable with a purely data-driven black-box model, because it lacks a connection to the underlying physics. Our study highlights how drilling data analysis can be optimally leveraged. The overarching conclusion: hybrid modeling can more accurately predict pump pressure spikes and capture the transient events at flow initiation when compared to physics-based or machine learning models used in isolation. Moreover, the approach is not limited to pressure behavior but can be applied to a wide range of well construction operations. The proposed approach is easy to implement and the details of implementation are presented in this study. Being able to accurately model and manage the pressure response during drilling operations is essential, especially for wells drilled in narrow-margin environments. Pressure can be more accurately predicted through our proposed hybrid modeling, leading to safer, more optimized operations.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3