Streamlined Completions Process: An Eagle Ford Shale Case History

Author:

Arguijo Andrew L.1,Morford Lee1,Baihly Jason2,Aviles Isaac2

Affiliation:

1. Cabot Oil & Gas

2. Schlumberger

Abstract

Abstract The Eagle Ford shale is a hydrocarbon-producing formation of significant importance due to its capability for producing at high-liquid/gas ratios, more so than other traditional shale plays. Situated in south Texas, the total Eagle Ford liquids production in 2007 was less than 21,000 bbl total. In 2011, production averaged 65,500 BOPD in the play (EIA, 2011). Activity in the Eagle Ford continues to increase because the benefits from producing high liquid yields across much of the play, along with attractive commodity prices, have made the Eagle Ford a more attractive development over many other shale reservoirs. The rapid development of the Eagle Ford shale was enabled by horizontal drilling. In 2007 none of the reported production was from horizontal wells. In 2011 alone over 2,800 drilling permits were issued, virtually all of them for horizontal wells (RigData, 2012). The Eagle Ford shale has low-clay content, high-carbonate content, and is in an extensional basin, making it conducive to somewhat complex hydraulic fracturing (Martin et al, 2011). The plug and perforating technique has become the preferred completion method in the play due to multiple entry points creating complex fractures at a minimal cost. This completion technique requires a mechanical means for conveying perforating guns, such as coiled tubing (CT), wireline tractor or stick pipe, for the first fracturing stage at the toe of the well. To streamline their completion process, an Eagle Ford operator chose to use an initiator valve that is run at the toe of the well as part of the final completion design. This pressure activated valve is capable of initiating operations on the first fracturing stage without the need for CT or other mechanical means of conveyance of perforating guns. Simple and robust, the valve is activated by a pressure increase from the surface. The valve uses a rupture disc for precise activation and a helical port design that allows for hydraulic fracturing to be performed through the valve into the cement and the formation. With over a dozen wells completed in the Eagle Ford formation by the operator, the valve has provided logistical and economic benefits to the streamlined completion process. This paper describes the initiator valve completion tool and its application in the Eagle Ford shale. A case history is presented to show the specific design and operation of the initiator valve, as well as its benefits over other completion practices that target the first stage in a closed lateral system. Detailed activation of the valve and fracturing data through the valve are also presented.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3