Unlocking the Potential of the Monterey Shale Resource: An Analysis of Geological Characteristics, Completion Techniques, and Production Behaviors

Author:

Saini D..1,Wright J..1,Mantas M..1,Gomes C..1

Affiliation:

1. California State University, Bakersfield

Abstract

Summary A critical analysis of the key geological characteristics, completion techniques, and production behaviors of the Monterey Shale wells and their comparisons with analogous major US shale plays—namely, the Bakken and the Eagle Ford—may provide insights that could eventually help the petroleum industry unlock its full potential. The present study reports on such efforts. The Monterey Shale is very young and geologically heterogeneous compared with the Eagle Ford and the Bakken. Oil viscosity in the Monterey Shale is significantly higher, and one can also notice that Monterey oil production has declined over the years. The Monterey Shale has a field-dependent completion strategy (pattern spacing and fracturing stage), while a horizontal, uncemented wellbore completion is common in the Bakken and the Eagle Ford. In the Monterey, nonhydraulically fractured zones of horizontal and hydraulically fractured wells appear to be making approximately equal contributions to the well's cumulative production. The ongoing water-disposal operations in overlying injection zones, up to a certain extent, have affected the productivity of both types (long and short production histories) of wells. The geology also appears to have an effect on the production behaviors of horizontal and hydraulically fractured wells. A preliminary economic analysis suggests that exploitation of the Monterey Shale is still a profitable venture. However, for sustainable development in a current price regime of USD 50/bbl of crude oil, it is necessary that production costs be reduced further. Also, compared with the Bakken and the Eagle Ford, the Monterey sits in regions of extremely high water stress (i.e., frequent occurrences of drought or drought-like conditions). However, oilfield-produced water associated with current steamflooding-based oil- and gas-production operations in the region as a base fluid suggests that it can potentially meet most of the water demand for future fracturing jobs. Also, combined use of a centralized water-management system; a less-costly, more energy-efficient, and high-capacity solar-powered desalination system; and a final sludge-management and/or residual-brine-disposal mechanism might assist the petroleum industry in managing flowback and produced waters while keeping water-handling costs low. A combination of new enhanced-oil-recovery (EOR) methods for releasing the remaining oil from both nonfractured and fractured zones of horizontal wells and the use of oilfield-produced and recycled water for completing hydraulically fractured horizontal wells might prove to be a significant change for the future exploitation of California's Monterey Shale resource, which is subject to the toughest hydraulic-fracturing regulations in the nation and is in a region of extremely high water stress.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3