Reservoir Modeling and Optimization Based on Deep Learning with Application to Enhanced Geothermal Systems

Author:

Yan Bicheng1,Xu Zhen1,Gudala Manojkumar1,Tariq Zeeshan1,Finkbeiner Thomas1

Affiliation:

1. King Abdullah University of Science and Technology

Abstract

Abstract With the energy demand arising globally, geothermal recovery by Enhanced Geothermal Systems (EGS) becomes a promising option to bring a sustainable energy supply and mitigate CO2 emission. However, reservoir management of EGS primarily relies on reservoir simulation, which is quite expensive due to the reservoir heterogeneity, the interaction of matrix and fractures, and the intrinsic multi-physics coupled nature. Therefore, an efficient optimization framework is critical for the management of EGS. We develop a general reservoir management framework with multiple optimization options. A robust forward surrogate model fl is developed based on a convolutional neural network, and it successfully learns the nonlinear relationship between input reservoir model parameters (e.g., fracture permeability field) and interested state variables (e.g., temperature field and produced fluid temperature). fl is trained using simulation data from EGS coupled thermal-hydro simulation model by sampling reservoir model parameters. As fl is accurate, efficient and fully differentiable, EGS thermal efficiency can be optimized following two schemes: (1) training a control network fc to map reservoir geological parameters to reservoir decision parameters by coupling it withfl ; (2) directly optimizing the reservoir decision parameters based on coupling the existing optimizers such as Adam withfl. The forward model fl performs accurate and stable predictions of evolving temperature fields (relative error1.27±0.89%) in EGS and the time series of produced fluid temperature (relative error0.26±0.46%), and its speedup to the counterpart high-fidelity simulator is 4564 times. When optimizing withfc, we achieve thermal recovery with a reasonable accuracy but significantly low CPU time during inference, 0.11 seconds/optimization. When optimizing with Adam optimizer, we achieve the objective perfectly with relatively high CPU time, 4.58 seconds/optimization. This is because the former optimization scheme requires a training stage of fc but its inference is non-iterative, while the latter scheme requires an iterative inference but no training stage. We also investigate the option to use fc inference as an initial guess for Adam optimization, which decreases Adam's CPU time, but with excellent achievement in the objective function. This is the highest recommended option among the three evaluated. Efficiency, scalability and accuracy observed in our reservoir management framework makes it highly applicable to near real-time reservoir management in EGS as well as other similar system management processes.

Publisher

SPE

Reference48 articles.

1. The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas;Battistelli;Geothermics,1997

2. Introduction to modeling of transport phenomena in porous media;Bear,2012

3. Bittencourt Antonio C and HorneRoland N. 1997. Reservoir development and design optimization. Proc., SPE annual technical conference and exhibition.

4. Physics-informed neural networks (PINNs) for fluid mechanics: A review;Cai;Acta Mechanica Sinica,2022

5. Computational methods for multiphase flows in porous;Chen,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3