Deep Graph Learning-Based Surrogate Model for Inverse Modeling of Fractured Reservoirs

Author:

Ma Xiaopeng1,Zhao Jinsheng1,Zhou Desheng1,Zhang Kai23ORCID,Tian Yapeng1

Affiliation:

1. School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China

3. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

Inverse modeling can estimate uncertain parameters in subsurface reservoirs and provide reliable numerical models for reservoir development and management. The traditional simulation-based inversion method usually requires numerous numerical simulations, which is time-consuming. Recently, deep learning-based surrogate models have been widely studied as an alternative to numerical simulation, which can significantly improve the solving efficiency of inversion. However, for reservoirs with complex fracture distribution, constructing the surrogate model of numerical simulation presents a significant challenge. In this work, we present a deep graph learning-based surrogate model for inverse modeling of fractured reservoirs. Specifically, the proposed surrogate model integrates the graph attention mechanisms to extract features of fracture network in reservoirs. The graph learning can retain the discrete characteristics and structural information of the fracture network. The extracted features are subsequently integrated with a multi-layer recurrent neural network model to predict the production dynamics of wells. A surrogate-based inverse modeling workflow is then developed by combining the surrogate model with the differential evolutionary algorithm. Numerical studies performed on a synthetic naturally fractured reservoir model with multi-scale fractures illustrate the performance of the proposed methods. The results demonstrate that the proposed surrogate model exhibits promising generalization performance of production prediction. Compared with tens of thousands of numerical simulations required by the simulation-based inverse modeling method, the proposed surrogate-based method only requires 1000 to 1500 numerical simulations, and the solution efficiency can be improved by ten times.

Funder

Shaanxi Province Postdoctoral Research Project

Natural Science Basic Research Program of Shaanxi

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3