Determination of Maximum Allowable Safe-Core-Retrieval Rates

Author:

Ashena Rahman1,Thonhauser Gerhard1,Ghalambor Ali2,Rasouli Vamegh3,Manasipov Roman1

Affiliation:

1. University of Leoben

2. Oil Center Research International

3. University of North Dakota

Abstract

Summary Cores can be considered the ground truth only if we eliminate or minimize their damage during core cutting, tripping, and surface handling. Such damage would adversely alter their properties. An important source of core damage is during tripping, when quick decompression might cause damage because of the induced microfractures. In this paper, a state-of-the-art geomechanical model is introduced and applied for determining the safe-tripping rates. The thermo-poroelastic (T-P-E) geomechanical approach used in this study includes the mathematical derivation of the diffusion time required for the imposed pore-pressure difference to dissipate while also considering the effects caused by the temperature changes, mudcake, and swabbing. The work uses different approaches for fluid modeling in a transient manner during tripping for the water-bearing, gas-bearing, and oil-bearing cores. In this work, the hydraulic diffusivity and the fluid type have been introduced as the main factors controlling the maximum allowable safe-tripping rates. A relationship between the allowable decompression rate and the hydraulic diffusivity will be presented for each specified fluid type. In addition, the results indicate that water-bearing cores can be safely tripped as quickly as the normal tripping speed of the wireline, even with a core that has a permeability as low as 0.01 md. For gas- and oil-bearing cores, the safe-tripping rates are determined to be much less than the water-bearing cores because the fluids expand with the pressure drop along the journey to the surface. The results show that the tripping rate is the lowest for the oil-bearing cores, particularly in the vicinity of the bubblepoint and gas critical pressure (because the gas expansion pushes the oil and applies significant viscous forces across the core pore throats). This paper is a novel work developing T-P-E and mathematical models for the case of core tripping considering the effects of pore-pressure change, temperature change, mudcake, and swabbing. The hydraulic diffusivity and the fluid type have been considered as the controlling factors. The approach has been applied for modeling the tripping of water-, gas-, and oil-bearing cores to provide maximum allowable tripping rates.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3