Drilling Parameters Optimization Using an Innovative Artificial Intelligence Model

Author:

Ashena Rahman1,Rabiei Minou2,Rasouli Vamegh2,Mohammadi Amir H.3,Mishani Siamak4

Affiliation:

1. Petroleum Engineering Team, School of Engineering, Asia Pacific University of Technology and Innovation (APU), Jalan Teknologi 5, Taman Teknologi Malaysia, 57000 Kuala Lumpur, Malaysia

2. Department of Petroleum Engineering, University of North Dakota, Grand Forks, ND 58202-8154

3. College of Agriculture, Engineering and Science, University of KwaZulu-Natal, 238 Mazisi Kunene Rd., Glenwood, Durban 4041, South Africa

4. Petroleum Engineering Team, Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenue, Kensington 6155, Perth, Australia

Abstract

Abstract Proper selection of the drilling parameters and dynamic behavior is a critical factor in improving drilling performance and efficiency. Therefore, the development of an efficient artificial intelligence (AI) method to predict the appropriate control parameters is critical for drilling optimization. The AI approach presented in this paper uses the power of optimized artificial neural networks (ANNs) to model the behavior of the non-linear, multi-input/output drilling system. The optimization of the model was achieved by optimizing the controllers (combined genetic algorithm (GA) and pattern search (PS)) to reach the global optima, which also provides the drilling planning team with a quantified recommendation on the appropriate optimal drilling parameters. The optimized ANN model used drilling parameters data recorded real-time from drilling practices in different lithological units. Representative portions of the data sets were utilized in training, testing, and validation of the model. The results of the analysis have demonstrated the AI method to be a promising approach for simulation and prediction of the behavior of the complex multi-parameter drilling system. This method is a powerful alternative to traditional analytic or real-time manipulation of the drilling parameters for mitigation of drill string vibrations and invisible lost time (ILT). The utilization can be extended to the field of drilling control and optimization, which can lead to a great contribution of 73% in reduction of the drilling time.

Funder

Asia Pacific University of Technology and Innovation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3