Data Driven Production Forecasting Using Machine Learning

Author:

Cao Q..1,Banerjee R..1,Gupta S..1,Li J..1,Zhou W..1,Jeyachandra B..1

Affiliation:

1. Schlumberger

Abstract

Abstract Forecasting of production in unconventional prospects has gained a lot of attention in the recent years. The key challenges in unconventional reservoirs have been the requirement to put online a) a large number of wells in a short period of time, b) well productivity significantly driven by completion characteristics and that c) the physics of fluid flow in these prospects still remain uncertain. In this paper, machine learning algorithms are used to forecast production for existing and new wells in unconventional assets using inputs like geological maps, production history, pressure data and operational constraints. One of the most popular Machine Learning methods – Artificial Neural Network (ANN) is employed for this purpose. ANN can learn from large volume of data points without assuming a predetermined model and can adapt to newer data as and when it becomes available. The workflow involves using these data sets to train and optimize the ANN model which, subsequently, is used to predict the well production performance of both existing wells using their own history and new wells by using the history of nearby wells which were drilled in analogous geological locations. The proposed technique requires users to do less data conditioning and model building and focus more on analyzing what-if scenarios and determining the well performance.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3