Numerical Study on Proppant Transport in Hydraulic Fractures Using a Pseudo-3D Model for Multilayered Reservoirs

Author:

Zhang Xi1,Yang Lifeng2,Weng Dingwei2,Wang Zhen2,Jeffrey Robert G.3

Affiliation:

1. China University of Geosciences (Corresponding author; email: miner.xi220@gmail.com)

2. Research Institute of Petroleum Exploration and Development, CNPC

3. SCT Operations Pty Ltd.

Abstract

Summary In this paper, we incorporated a kinematic proppant transport model for spherical suspensions in hydraulic fractures developed by Dontsov and Peirce (2014) in a pseudo-3D hydraulic-fracture simulator for multilayered rocks to capture a different proppant transport speed than fluid flow and abridged fracture channel by highly concentrated suspensions. For pressure-driven proppant transport, the bridges made of compact proppant particles can lead to both proppant distribution discontinuity and increased fracture aperture and height because of the higher pressure. The model is applied to growth of a fracture from a vertical well, which can contain thin-bedded intervals and more than one opened hydraulic-fracture interval, because the fracture plane extends in height through layers with contrasts in stress and material properties. Three numerical examples demonstrate that a loss of vertical connectivity can occur among multiple fracture sections, and proppant particles are transported along the more compliant layers. The proppant migration within a narrow fracture in a thin soft rock layer can result in bridging and formation of a proppant plug that strongly limits fluid speed. This generates an increase of injection pressure associated with fracture screenout, and these screenout events can emerge at different places along the fracture. Next, because of the lack of pretreatment geomechanical data, the values of layer stress and leakoff coefficient are adjusted for a field case so that the varying bottomhole pressure and fracture length are in line with the field measurements. This paper provides a useful illustration for hydraulic-fracturing treatments with proppant transport affected by and interacting with reservoir lithological complexities.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3