Affiliation:
1. China University of Geosciences (Corresponding author; email: miner.xi220@gmail.com)
2. Research Institute of Petroleum Exploration and Development, CNPC
3. SCT Operations Pty Ltd.
Abstract
Summary
In this paper, we incorporated a kinematic proppant transport model for spherical suspensions in hydraulic fractures developed by Dontsov and Peirce (2014) in a pseudo-3D hydraulic-fracture simulator for multilayered rocks to capture a different proppant transport speed than fluid flow and abridged fracture channel by highly concentrated suspensions. For pressure-driven proppant transport, the bridges made of compact proppant particles can lead to both proppant distribution discontinuity and increased fracture aperture and height because of the higher pressure. The model is applied to growth of a fracture from a vertical well, which can contain thin-bedded intervals and more than one opened hydraulic-fracture interval, because the fracture plane extends in height through layers with contrasts in stress and material properties. Three numerical examples demonstrate that a loss of vertical connectivity can occur among multiple fracture sections, and proppant particles are transported along the more compliant layers. The proppant migration within a narrow fracture in a thin soft rock layer can result in bridging and formation of a proppant plug that strongly limits fluid speed. This generates an increase of injection pressure associated with fracture screenout, and these screenout events can emerge at different places along the fracture. Next, because of the lack of pretreatment geomechanical data, the values of layer stress and leakoff coefficient are adjusted for a field case so that the varying bottomhole pressure and fracture length are in line with the field measurements. This paper provides a useful illustration for hydraulic-fracturing treatments with proppant transport affected by and interacting with reservoir lithological complexities.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献