Experimental Study for the Effects of Different Factors on the Sand-Carrying Capacity of Slickwater

Author:

Peng Huan12ORCID,Li Wenzhe12,Liu Juncheng3,Peng Junliang12,Han Huifen12,Liu Jiayi4,Liu Dan1,Yang Zhifan12

Affiliation:

1. Engineering Technology Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu 610017, China

2. Key Laboratory of Shale Gas Evaluation and Exploitation of Sichuan Province, Chengdu 610017, China

3. Development Division of Southwest Oil & Gas Field Company, PetroChina, Chengdu 610051, China

4. Shunan Gas Field of Southwest Oil & Gas Field Company, PetroChina, Luzhou 646000, China

Abstract

With the continuous exploration and development of unconventional oil and gas reservoirs, volume fracturing technology becomes one of the necessary measures for developing shale gas and tight sandstone gas reservoirs effectively. Volume fracturing technology usually uses slickwater and drag-reducing agent as the core of the fracturing system. The composition of the fracturing system is the main factor determining its performance. Polyacrylamide has many amide groups in its main chain, high activity, and controllable performance, often in solid powder and liquid emulsion states. Furthermore, polyacrylamide which is the water-soluble drag-reducing agent is most widely used in applying current shale gas slickwater fracturing operations. Due to the low viscosity and poor sand-carrying capacity of slickwater, proppant easily settles at the bottom of hydraulic fractures. This phenomenon influences the stimulation effect of volume fracturing. Therefore, the law of sand carrying and placement of proppant in hydraulic fractures in volume fracturing plays an essential role in determining the success of the stimulation effect of volume fracturing. Through the visualization device of proppant transport in the fracture, the settlement of proppant in the fracture was studied experimentally. And through experimental equipment, the effects of different operation pumping rates, liquid viscosity, proppant type, and proppant pumping schedule on the stimulation effect were studied. The experimental results can provide strong support for volume fracturing into well material optimization and operation parameter optimization for unconventional oil and gas reservoirs.

Funder

Scientific Research and Technology Development Project of Southwest Oil and Gas Field Company, PetroChina

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3