History Matching Under Geological Constraints Coupled with Multiobjective Optimization To Optimize MWAG Performance: A Case Study in a Giant Onshore Carbonate Reservoir in the Middle East

Author:

AlAmeri Saeeda1,AlBreiki Mohamed1,Geiger Sebastian1

Affiliation:

1. Heriot-Watt University

Abstract

Summary In this paper we demonstrate how key geological uncertainties in a giant onshore carbonate reservoir in the Middle East, most notably fracture permeability and saturation distributions, impact the quality of the history match and change the performance forecasts of a planned miscible water alternating gas (MWAG) injection process. Different geological models for the reservoir were designed by integrating static and dynamic data. These data indicated the need to consider fault-related fractures using effective medium theory (EMT) and to update the saturation distribution by integrating special core analysis and log-derived J-functions in the reservoir model during the history matching. Afterward, multiobjective optimization (MOO) was applied for each history-matched model to identify well controls that optimally balanced the need to maximize the time on the plateau rate while adhering to the field's gas production constraints. Our results clearly show that including low-intensity fault-controlled fractures in the reservoir model improved the quality of the history match for the gas/oil ratio (GOR), BHP and water cut (WC). This is especially true for wells located near faults, which were difficult to match in the past. Moreover, our results further show that the updated saturation model improved the quality of the history match for the WC, and honored water saturation from the log with high accuracy, particularly for wells located in the transition zone. Applying MOO for each history-matched model then allowed us to identify well controls for the MWAG injection that could extend the time at which the reservoir would be produced at the plateau rate for up to 11 years and the risk of losing production plateau down to 2 years, while always adhering to the current field operational constraints. We demonstrate how the integration of MOO with an innovative workflow for fracture and saturation modeling impacts the prediction of a planned MWAG injection in a giant onshore carbonate reservoir. Our work clearly illustrates the potential of integrating MOO with new reservoir characterization methods to improve the quantification of uncertainties in reservoir performance predictions in carbonate reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3