Accelerating Completions Concept Select in Unconventional Plays Using Diagnostics and Frac Modeling

Author:

Azad Ali1,Somanchi Kiran1,Brewer Jim R.1,Yang Daniel1

Affiliation:

1. Shell Canada

Abstract

Abstract Data pads in unconventional plays have shown significant value when they are carefully designed to tackle specific problems or concerns. This includes the use of diagnostics to cross-validate development concepts such as stimulation design, well architecture, frac and well spacing, and numerous other variables. In this paper, it is demonstrated how various diagnostics technologies together with subsurface data can be used to calibrate a frac model. The model can then be coupled with a reservoir simulator to accelerate completions concept select decisions in unconventional plays. This process (a) eliminates multiple field trial costs, (b) tests different completions and stimulation designs, and (c) assists in de-risking various field development planning scenarios. This paper focuses on a real-life case-study where integrated diagnostics and modeling were applied to de-risk multiple completions scenarios. An intermediate planar frac model was calibrated and used to lower the uncertainty of key frac parameters including frac geometry and conductivity. In addition, subsurface parameters such as in-situ stresses and rock properties were tuned. The results from the integrated modeling effort were used to propose future development options for the play.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Literature Review;Distributed Acoustic Sensing in Geophysics;2021-12-10

2. Calculating far-field anisotropic stress from 3D seismic in the Permian Basin;The Leading Edge;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3