An Experimental Study of Steam-Solvent Coinjection for Bitumen Recovery Using a Large-Scale Physical Model

Author:

Sheng Kai1,Okuno Ryosuke1,Al-Gawfi Abdullah2,Nakutnyy Petro2,Imran Muhammad2,Nakagawa Kazunori3

Affiliation:

1. University of Texas at Austin

2. Saskatchewan Research Council

3. Japan Canada Oil Sands Ltd

Abstract

Summary In this paper, we present a solvent-assistedsteam-assisted gravity drainage (SA-SAGD) experiment with multicomponent solvent (i.e., condensate) using a large physical model. The sandpack for the experiment had a porosity of 0.33 and a permeability of 5.6 darcies in the cylindrical pressure vessel that was 1.22 m in length and 0.425 m in internal diameter. The sandpack was initially saturated with 93% Athabasca bitumen and 7% deionized water. The main objective of this research was to study the in-situ thermal/compositional flow and produced bitumen properties in SA-SAGD with condensate. After the preheating of the sandpack for 24 hours, SA-SAGD with 2.8-mol% condensate was performed at 50 cm3/min (cold-water equivalent) at 3500 kPa for 3 days. The experimental data of production, injection, and temperature distribution were recorded. Also, 10 samples of produced oil were taken and analyzed for density and asphaltene content. The sandpack was excavated after the experiment to analyze the asphaltene content in the remaining oil at different locations. A numerical simulation model was calibrated based on the data of material balance and temperature distribution, and it was validated with properties of the produced and excavated samples. The simulation model used fluid models based on experimental data of viscosities, densities, and bubblepoints for four condensate/bitumen mixtures. Results showed that SA-SAGD was efficient in bitumen recovery with a cumulative steam-to-oil ratio (SOR) that was two to three times smaller than that in SAGD using the same physical model. Detailed analysis of the calibrated simulation model indicated that SA-SAGD enabled the steam chamber to expand more efficiently with a smaller amount of water throughput than SAGD. Volatile solvent components tended to remain in the chamber, and the condensed solvent components acted as a miscible carrier for bitumen components. The analysis further showed that the more efficient oil recovery in SA-SAGD occurred with predominantly cocurrent flow of oil and water near the chamber edge. SA-SAGD recovered a larger amount of asphaltene components (i.e., less in-situ upgrading) than SAGD likely because of its lower chamber temperature, shorter production period, and enhanced local displacement efficiency.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3