Impact of soil compaction heterogeneity and moisture on maize (Zea mays L.) root and shoot development

Author:

Konôpka B.,Pagès L.,Doussan C.

Abstract

Soil compaction heterogeneity and water content are supposed to be decisive factors influencing plant growth. Our experiment focused on simulation of two soil moisture levels (0.16 and 0.19 g/g) plus two levels of clod proportion (30 and 60% volume) and their effects on root and leaf variables of maize (<I>Zea mays</I> L.). We studied number of primary and lateral roots as well as primary root length at the particular soil depths. Statistical tests showed that the decrease rate of the number of roots versus depth was significantly affected by the two studied factors (<I>P</I> < 0.01). Soil moisture and clod occurrence, interactively, affected leaf biomass (<I>P</I> = 0.02). Presence of clods modified root morphological features. Particularly, the diameter of primary roots in the clods was significantly higher than of those grown in fine soil (<I>P</I> < 0.01). For primary roots, which penetrated clods, branching density decreased considerably for the root segments located just after the clods (<I>P</I> = 0.01). Regarding their avoidance to clods and tortuosity, large differences were found between primary roots grown in the contrasting soil environments.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3