Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection-dispersion equation

Author:

Moradi G.,Mehdinejadiani B.

Abstract

This paper compared the abilities of advection-dispersion equation (ADE) and spatial fractional advection-dispersion equation (sFADE) to describe the migration of a non-reactive contaminant in homogeneous and heterogeneous soils. To this end, laboratory tests were conducted in a sandbox sizing 2.5 × 0.1 × 0.6 m (length × width × height). After performing a parametric sensitivity analysis, parameters of sFADE and ADE were individually estimated using the inverse problem method at each distance. The dependency of estimated parameters on distance was examined. The estimated parameters at 30 cm were used to predict breakthrough curves (BTCs) at subsequent distances. The results of sensitivity analysis indicated that average pore-water velocity and dispersion coefficient were, respectively, the most and least sensitive parameters in both mathematical models. The values of fractional differentiation orders (α) for sFADE were smaller than 2 in both soils. The scale-dependency of the dispersion coefficients of ADE and sFADE was observed in both soils. However, the application of sFADE to describe solute transport reduced the scale effect on the dispersion coefficient, especially in the heterogeneous soil. For the homogeneous soil, the predicting results of ADE and sFADE were nearly similar, while for the heterogeneous soil, the predicting results of sFADE were more satisfactory in comparison with those of ADE, especially when the transport distance increased. Compared to ADE, the sFADE simulated somewhat better the tailing parts of BTCs and showed the earlier arrival of tracer. Overall, the solute transport, especially in the heterogeneous soil, was non-Fickian and the sFADE somewhat better described non-Fickian transport.

Publisher

Czech Academy of Agricultural Sciences

Subject

Soil Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3