Evaluation of Dual Domain Mass Transfer in Porous Media at the Pore Scale

Author:

Dorchester Leland,Day‐Lewis Frederick D.12ORCID,Singha Kamini3ORCID

Affiliation:

1. Pacific Northwest National Laboratory, Earth Systems Science Division 902 Battelle Boulevard Richland WA 99352 USA

2. Department of Geophysics Colorado School of Mines Golden CO USA

3. Hydrologic Science and Engineering Program, Colorado School of Mines 1301 19th Street Golden CO 80401 USA

Abstract

AbstractDual‐porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore‐scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive‐tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore‐scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic‐length scale estimated from a best‐fit dual‐domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass‐transfer rate; and (3) a comparison of length scales associated with the mass‐transfer rate (Lα) and those associated with calculation of the Peclet number (LPe) show LPe is commonly larger than Lα. These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore‐water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single‐porosity domains.

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3