Catalytic properties and stability of nickel–tin powder alloys in the process of electrochemical hydrogen evolution from alkali solution

Author:

Vrublevskaya O. N.1ORCID,Kareva N. Yu.2,Kalesnik A. D.2,Kudaka A. A.1ORCID,Bolormaa B.3ORCID,Sevjidsuren G.3ORCID

Affiliation:

1. Research Institute for Physical Chemical Problems of the Belarusian State University

2. Belarusian State University

3. Institute of Physics and Technology of the Mongolian Academy of Sciences

Abstract

Ni–Sn powder alloys with a nickel content from 24.4 to 78.5 at.% and from 30.6 to 55.1 at.%, respectively, were synthesized chemically and electrochemically for the use as catalysts for the hydrogen electrochemical reduction (HER) in alkali solution. It was established that the catalytically active surface area of chemically synthesized powders was larger in comparison with electrochemically obtained ones. Ni24.4Sn75.6 powder alloy has the largest surface area. It was found that catalytic properties of chemically synthesized powders increased in the row Ni24.4Sn75.6 < Ni78.5Sn21.5 < Ni. Electrochem ically obtained alloys are inefficient as HER catalysts. It was found that Ni24.4Sn75.6 alloy is characterized by the greater re tention of catalytically active surface area during exploitation in alkali solution in comparison with Ni and Ni78.5Sn21.5 alloy. 

Publisher

Publishing House Belorusskaya Nauka

Subject

Inorganic Chemistry,Organic Chemistry,Chemistry (miscellaneous),Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3