Affiliation:
1. “INTEGRAL” holding managing company
2. Belarusian State University
Abstract
The formation of nickel silicide layers on (111)-Si substrates during rapid thermal annealing in the heat balance mode was studied by the Rutherford backscattering method, X-ray diffraction, transmission electron microscopy, and electrophysical measurements. Nickel films of about 70 nm thickness were deposited by magnetron sputtering at room temperature. The rapid thermal treatment was carried out in a heat balance mode by irradiating the substrates backside with a non-coherent light flux of quartz halogen lamps in the nitrogen medium for 7 seconds up to the temperature range of 200 to 550 °C. The redistribution of nickel and silicon atoms to monosilicide NiSi composition starts already at a temperature of 300 °С and almost ends at a temperature of 400 °С. In the same temperature range, the orthorhombic NiSi phase with an average grain size of about 0.05–0.1 μm is formed. At a rapid thermal treatment temperature of 300 °C, two phases of silicides (Ni2 Si and NiSi) are formed, while a thin layer of unreacted Ni is retained on the surface. This fact can be explained by the high heating rate at the initial annealing stage, at which the temperature conditions of the NiSi phase formation occur earlier than the entire Ni layer manages to turn into the Ni2 Si phase. The layers with a simultaneous presence of three phases are characterized by a high roughness of the silicide-silicon interface. The dependence of the specific resistivity of nickel silicide layers shows an increase to the values of 26–30 μOhm · cm in the range of rapid thermal treatment temperatures of 200–250 °C and a subsequent decrease to the values of about 15 μOhm · cm at a rapid thermal treatment temperature of 400 °C. This value of specific resistivity is characteristic of the high conductivity of the NiSi phase and correlates well with the results of structure studies.
Publisher
Publishing House Belorusskaya Nauka
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献