Automated Calibration of Traffic Demand and Traffic Lights in SUMO Using Real-World Observations

Author:

Harth Michael,Langer Marcel,Bogenberger Klaus

Abstract

Virtual traffic environments allow for evaluations of automated driving functions as well as future mobility services. As a key component of this virtual proving ground, a traffic flow simulation is necessary to represent real-world traffic conditions. Real-world observations, such as historical traffic counts and traffic light state information, provide a basis for the representation of these conditions in the simulation. In this work, we therefore propose a scalable approach to transfer real-world data, exemplarily taken from the German city Ingolstadt, to a virtual environment for a calibration of a traffic flow simulation in SUMO. To recreate measured traffic properties such as traffic counts or traffic light programs into the simulation, the measurement sites must first be allocated in the virtual environment. For the allocation of historical real-world data, a matching procedure is applied, in order to associate real-world measurements with their corresponding locations in the virtual environment. The calibration incorporates the replication of realistic traffic light programs as well as the adjustment of simulated traffic flows. The proposed calibration procedure allows for an automated creation of a calibrated traffic flow simulation of an arbitrary road network given historical real-world observations.

Publisher

TIB Open Publishing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mesoscopic V2X simulation framework to enhance simulation performance;Simulation Modelling Practice and Theory;2024-11

2. Temporal Enhanced Floating Car Observers;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

3. Enhancing Realistic Floating Car Observers in Microscopic Traffic Simulation;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

4. User-Centric Green Light Optimized Speed Advisory with Reinforcement Learning;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

5. Performance of State-Shared Multiagent Deep Reinforcement Learning Controlled Signal Corridor with Platooning-Based CAVs;Journal of Transportation Engineering, Part A: Systems;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3