Comparison of Reinforcement Learning Agents Applied to Traffic Signal Optimisation

Author:

Louw Cobus,Labuschagne Louwrens,Woodley TiffanyORCID

Abstract

Traditional methods for traffic signal control at an urban intersection are not effective in controlling traffic flow for dynamic traffic demand which leads to negative environmental, psychological and financial impacts for all parties involved. Urban traffic management is a complex problem with multiple factors  effecting the control of traffic flow. With recent advancements in machine learning (ML), especially reinforcement learning (RL), there is potential to solve this problem. The idea is to allow an agent to learn optimal behaviour to maximise specific metrics through trial and error. In this paper we apply two RL algorithms, one policy-based, the other value-based, to solve this problem in simulation. For the simulation, we use an open-source traffic simulator, Simulation of Urban MObility (SUMO), packaged as an OpenAI Gym environment. We trained the agents on different traffic patterns on a simulated intersection. We compare the performance of the resultant policies to traditional approaches such as the Webster and vehicle actuated (VA) methods. We also examine and  contrast the policies learned by the RL agents and evaluate how well they generalise to different traffic patterns.

Publisher

TIB Open Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3