Challenges in Reward Design for Reinforcement Learning-based Traffic Signal Control: An Investigation using a CO2 Emission Objective

Author:

Schumacher MaxORCID,Adriano Christian MedeirosORCID,Giese Holger

Abstract

Deep Reinforcement Learning (DRL) is a promising data-driven approach for traffic signal control, especially because DRL can learn to adapt to varying traffic demands. For that, DRL agents maximize a scalar reward by interacting with an environment. However, one needs to formulate a suitable reward, aligning agent behavior and user objectives, which is an open research problem. We investigate this problem in the context of traffic signal control with the objective of minimizing CO2 emissions at intersections. Because CO2 emissions can be affected by multiple factors outside the agent’s control, it is unclear if an emission-based metric works well as a reward, or if a proxy reward is needed. To obtain a suitable reward, we evaluate various rewards and combinations of rewards. For each reward, we train a Deep Q-Network (DQN) on homogeneous and heterogeneous traffic scenarios. We use the SUMO (Simulation of Urban MObility) simulator and its default emission model to monitor the agent’s performance on the specified rewards and CO2 emission. Our experiments show that a CO2 emission-based reward is inefficient for training a DQN, the agent’s performance is sensitive to variations in the parameters of combined rewards, and some reward formulations do not work equally well in different scenarios. Based on these results, we identify desirable reward properties that have implications to reward design for reinforcement learning-based traffic signal control.

Funder

Hasso-Plattner-Institut, Universität Potsdam

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3