Reducing Time and Costs of FT-IR Studies of the Effect of SiNx, Dopants, and Emitter on Hydrogen Species in Si Wafers and Solar Cell Structures

Author:

Aßmann NicoleORCID,Søndenå RuneORCID,Hammann BenjaminORCID,Kwapil WolframORCID,Monakhov EduardORCID

Abstract

Accurately measuring the hydrogen content in silicon (Si) solar cells is essential due to its connection to surface degradation and light and elevated temperature induced degradation (LeTID). Fourier Transform-Infrared (FT-IR) spectroscopy provides a quantitative technique for determining the content of various hydrogen species in Si wafers that have undergone various process steps. In this study, we examine both the effect of a silicon nitride (SiNx:H) layer during FT-IR spectroscopic measurements on hydrogen species, as well as the impact of an emitter present during firing on the amount of hydrogen introduced into Si wafers. We find that the presence of SiNx:H during measurements has negligible effects on the measured hydrogen species, potentially simplifying the preparation steps for FT-IR. For the emitter investigation we analyze boron (B)- and gallium (Ga)-doped p-type wafers to detect H-B, H-Ga, Oi-H2, and H2. We observe that hydrogen species initially present in B- and Ga-doped Si wafers differ significantly. Only H-Ga is detected in Ga-doped wafers, while H-B, Oi-H2, and H2 signals are measured in B-doped wafers. Moreover, we cannot confirm an increased release of H through the emitter into the bulk during the firing process. Finally, we conduct measurements at different temperatures and confirm that cryogenic temperatures are more effective for detecting H-B and H2 with concentrations in the 1014 cm-3 range. Nevertheless, useful spectra can still be obtained at liquid nitrogen (N2) temperatures.

Funder

Norges Forskningsråd

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3