Positional Accuracy of Portable GPS Devices during Different Ride Conditions

Author:

Engleman Krystina,Vega Henry,Suway Jeffrey,Desai Elvis

Abstract

<div class="section abstract"><div class="htmlview paragraph">Rising electric scooter popularity has seen a surge in electric scooter crashes. Crash reconstructionists increasingly have access to global positioning system (GPS) data for micromobile vehicle trips, and GPS devices can produce a wealth of data about cyclists’, scooterists’, and other riders’ road paths and route usage. However, prior research has demonstrated that GPS positional accuracy is less reliable for more nuanced roadway positioning, such as which lane a vehicle occupies, as well as within-lane movements, such as acceleration and deceleration⁠. This limitation presents a challenge for crash reconstructionists that may have access to GPS data and require second-by-second positional accuracy to determine such nuanced maneuvers and vehicle positioning in their analysis. The purpose of this study was to explore the positional accuracy of five GPS units for a micromobile vehicle during three different ride conditions: acceleration, deceleration, and constant speed. The same devices were also tested for stationary accuracy and power cut-off scenarios. To obtain precise data from GPS units, tests were performed with an electric scooter ridden in rural landscapes with clear skies. Location data from the portable GPS devices were compared to reference data obtained from photogrammetry methods based on video recorded by DJI Mavic 2 drones. It was found that the overall average positional deviation from baseline across the devices and three ride conditions was 6.68 ft. The five devices also showed inconsistencies for which of the three ride stages had the greatest and least positional error. These findings can help investigators and crash reconstructionists quantify these devices’ GPS positional accuracy when using such data in their forensic analysis.</div></div>

Publisher

SAE International

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3