Modeling of Transient Gasoline Engine Emissions using Data-Driven Modeling Techniques

Author:

Sundaram Ganesh,Gehra Tobias,Ulmen Jonas,Heubaum Mirjan,Görges Daniel,Guenthner Michael

Abstract

<div class="section abstract"><div class="htmlview paragraph">In recent years, the automotive industry has shifted from purely combustion engine-driven vehicles towards hybridization due to the introduction of CO<sub>2</sub> emission legislation. Hybrid powertrains also represent an important pillar and starting point in the journey towards zero-emission and full electrification. Fulfilling the most recent emission standards requires efficient control strategies for the engine, capable of real-time operation. Model accuracy is one of the main parameters which directly influence the performance of such control strategies. Specific methodologies developed in the past, such as physically- or phenomenologically-based approaches, have already facilitated the modeling of the combustion engine. Even though these models can accurately predict emissions in steady state conditions, their performance during transient engine operation is time-consuming and still not sufficiently reliable. The major contribution of the current work is to clarify and apply the recent advancements in data-driven modeling techniques, especially in time series forecasting with feedforward neural networks (FFNNs) and long short-term memory networks (LSTMs), to address the limitations mentioned above and to compare the different approaches.</div><div class="htmlview paragraph">The quantity and quality of data are significant challenges for data-driven modeling. This paper studies the modeling of gasoline engine emissions using FFNNs and LSTMs. The data quantity and quality requirements are studied based on a portable emission measurement system (PEMS), measuring at 1 Hz, and additional analyses on an engine test bench with a HiL setup, providing the possibility of increasing the measurement frequency with more sophisticated devices by a factor of five. Subsequently, the training and validation of the FFNNs and LSTMs are outlined, and finally, the model accuracy is discussed.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of an End-to-End Tool Chain for AI-Assisted Generation and Optimization of Operating Strategies for Hybrid Electric Vehicles;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

2. Learning-Based Frameworks for Minimizing Pollutant Emissions in Hybrid Electric Vehicles for Dynamic Driving Conditions;2023 IEEE Vehicle Power and Propulsion Conference (VPPC);2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3