Research on Reduction of Piston Vibration by Providing Granular Dampers Inside the Lattice Structure

Author:

Sakai Hiroyuki,Honda Yuichi,Osawa Shun,Honghu Guo,Takezawa Akihiro,Ichikawa Kazuo

Abstract

<div class="section abstract"><div class="htmlview paragraph">A high compression ratio is an effective means for improving the thermal efficiency of an internal combustion engines. However, a high compression ratio leads to a rapid rise in the combustion pressure, as it causes a high impulse force. The impulse force generates vibrations and noise by spreading in the engine. Therefore, reducing the vibration of the combustion (which increases as the compression ratio increases) can improve the thermal efficiency while using the same technology.</div><div class="htmlview paragraph">We are conducting model-based research on technologies for reducing combustion vibration by applying a granular damper to a piston. To efficiently reduce the vibration, we suppress it directly with the piston, i.e., the source of the vibration. Thus, the damping effect is maximized within a minimized countermeasure range. The damping system is a piston equipped with an additively manufactured particle damper (AMPD), with porous voids (lattice structure) and can be manufactured using methods such as laser beam powder bed fusion (LPBF). For the installation of the AMPD, we propose an optimal design structure that enhances productivity and is able to achieve the same or better effect even if the other damping materials are reduced.</div><div class="htmlview paragraph">In this paper, we describe the design method for the vibration damping lattice piston and construction of a prediction method using the discretized element method for vibration damping by the AMPD. The pistons are manufactured using LPBF or casting. In addition, we consider the results of regarding the vibration and noise characteristics when changing the type of particles the AMPD.</div></div>

Publisher

SAE International

Reference9 articles.

1. International Energy Agency 2015

2. International Energy Agency 2020

3. Kaminaga , T. , Yamaguchi , K. , Ratnak , S. , Kusaka , J. et al. A Study on Combustion Characteristics of a High Compression Ratio SI Engine with High Pressure Gasoline Injection SAE Technical Paper 2019-24-0106 2019 https://doi.org/10.4271/2019-24-0106

4. Kanda , Y. and Mori , T. Reduction of Diesel Knock Noise by Controlling Piston Vibration Characteristics International Journal of Automotive Engineering 7 2016 61 67 https://doi.org/10.20485/jsaeijae.7.2_61

5. Ichikawa , K. , Nomura , J. , Takezawa , A. , and Kitamura , M. Structural Topology and Lattice Optimization of Gasoline Engine Piston Considering Strength The 13th World Congress of Structural and Multidisciplinary Optimization 2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3