Assessment of Vehicular Vision Obstruction due to Driver-Side B-Pillar and Remediation with Blind Spot Eliminator

Author:

Baysal Dilara N.1

Affiliation:

1. Purdue University College of Engineering, Mechanical

Abstract

<div class="section abstract"><div class="htmlview paragraph">Blind spots created by the driver-side B-pillar impair the ability of the driver to assess their surroundings accurately, significantly contributing to the frequency and severity of vehicular accidents. Vehicle manufacturers cannot readily eliminate the B-pillar due to regulatory guidelines intended to protect vehicular occupants in the event of side collisions and rollover incidents. Furthermore, assistance implements utilized to counteract the adverse effects of blind spots remain ineffective due to technological limitations and optical impediments.</div><div class="htmlview paragraph">This paper introduces mechanisms to quantify the obstruction caused by the B-pillar when the head of the driver is facing forward and turning 90°, typical of an over-the-shoulder blind spot check. It uses the metrics developed to demonstrate the relationship between B-pillar width and the obstruction angle. The paper then creates a methodology to determine the movement required of the driver to eliminate blind spots. Ultimately, this paper proposes a solution, the Blind Spot Eliminator, and demonstrates that it successfully decreases both the obstruction angle and, consequently, the required driver movement. The Blind Spot Eliminator is a lens on the rear-most section of the left driver’s side window that utilizes refraction to display objects in the surrounding areas. A prototype of the Blind Spot Eliminator was constructed and experimented with using a mannequin to model human vision in a typical passenger vehicle. The results of this experiment illustrated a substantial improvement in viewing ability, as predicted by earlier calculations. This paper concludes that the proposed Blind Spot Eliminator has excellent potential to improve driver safety and reduce vehicular accidents.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3